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Abstract—The detection of radioactive contraband is a critical

problem is maintaining national security for any country. Photon
emissions from threat materials challenge both detection and

measurement technologies especially when concealed by various
types of shielding complicating the transport physics signifi-

cantly. This problem becomes especially important when ships
are intercepted by U.S. Coast Guard harbor patrols searching

for contraband. The development of a sequential model-based
processor that captures both the underlying transport physics

of gamma-ray emissions including Compton scattering and the
measurement of photon energies offers a physics-based approach

to attack this challenging problem. The inclusion of a basic
radionuclide representation of absorbed/scattered photons at a

given energy along with interarrival times is used to extract
the physics information available from the noisy measurements

portable radiation detection systems used to interdict contraband.
It is shown that this physics representation can incorporated scat-

tering physics leading to an “extended” model-based structure
that can be used to develop an effective sequential detection

technique. The resulting model-based processor is shown to
perform quite well based on data obtained from a controlled

experiment.

I. INTRODUCTION

Whether a Coast Guard patrol boat interdicting and search-

ing a vessel in the harbor for contraband or a commercial semi-

trailer truck passing through a portal monitor at a reasonable

speed must be screened at ports-of-entry for possible threats

emanating from radioactive contraband The need to investigate

techniques that can provide for more sensitive detection of

terrorist threats throughout the world demand that meaningful

approaches be developed to solving many critical security

problems for the protection of valuable national resources.

Detection of radiological threat materials is a difficult prob-

lem primarily because of low observable count rates and short

detection intervals available. For instance, semi-trailer vehicles

move through portal systems allowing less than 10 seconds for

the initial screening. Shielding materials from packaging and

adjacent cargo present major difficulties in these low-count,

hostile environments. Low-count detection is a challenging

problem made difficult because of background noise, measure-

ment system inadequacies, and the heterogeneous transport

paths between source and detector [1]-[3]. Even the current

methods of gamma-ray spectrometry incorporating high res-

olution detectors are challenged by the low-count problem.

Recall that this measurement technique estimates the energy

(probability) distribution creating a count-dependent histogram

at various energies (counts vs. energy) discarding arrival

time information [2]. Thus, the basic problem we investigate

is the detection and identification of radioactive contraband

from low-count measurements using a physics-based statistical

approach incorporating scattering physics based on a model-

based signal processing approach.

Some work has been accomplished on this problem, but very

little effort has been performed on this specific application

in the signal processing area [4]-[8]. Our approach closely

follows the development of our Bayesian model-based pro-

cessor of a previous paper with the incorporation of Compton

scattering photons into the processing scheme [10]. This is

accomplished by extending the radionuclide representation to

incorporate the scattered photons along with the development

of a simplified one-dimensional transport model required to

capture material interactions in the shield and detector mate-

rials [9].

In this paper, we briefly develop the physics-based signal

processing models employed in the subsequent model-based

constructs. Here we start with the “extended” monoenergetic

representation incorporating Compton scattering physics and

then incorporate noise and parameter uncertainties into the

model. A simplified one-dimensional transport model is dis-

cussed to capture photon scattering physics in both shield

and detector materials. Based on these representations, we

develop the sequential detection/identification paradigm and

then investigate solutions to the processing problem and im-

plementation of the technique. The results of applying the

processor to controlled experimental data shows the capability

of the sequential processor to perform in a reasonable manner.

In Sec. II we develop the physics-based signal processing

models employed in the subsequent Bayesian constructs. Next

we develop the sequential detection paradigm in Sec. III. In

Sec. IV we investigate solutions to the processing problem and

implementation of the technique. In Sec. V we develop the

overall identification scheme and demonstrate its performance

on experimental data. The results of applying the processor

to controlled experimental data shows the capability of the

sequential processor to perform in an effective manner.



Fig. 1. Gamma-ray transport model: (a) Monoenergetic source. (b) Ideal
radionuclide event mode sequence: source union/superposition. (c) Scattering
medium transported EMS. (d) Detector material interaction/response. (e)

Measured EMS sequence.

II. PHYSICS-BASED PROCESSING MODEL

In this section we discuss physics-based representations that

will be incorporated into the model-based signal processors

for detection and identification. The measured data consists

of a low energy count, random, impulsive-like, time series

measurements (energy vs time) in the form of an event mode

sequence (EMS) obtained from the detector electronics [2].

A particular radionuclide can be uniquely characterized by

two basic parameters: its energy and the relative intensity

of γ-rays emitted [2]. Mathematically, we define the pair,

[{εm`}, {λm`}], as the respective energy (MeV) and photon

detection rate of the `th-downscatter and mth γ-ray line of

the radionuclide.

The γ-ray is transported through a medium and interacts

with materials, shield and detector resulting in the output

of a list of events consisting of an event time an amplitude

of pulse height or energy. It is important to realize that in

the diagram of Fig. 1, we model the source radionuclide

by its energy and arrival times. Since this representation of

the source radionuclide contains the constituent energy and

timing, then all of the information is captured by the sets,

[{εm`} , {τm`}] , ` = 0, · · · , Lε(m), m = 1, · · · , Mε.

For sequential detection we process each event in the EMS

individually using a model with parameters that are analogous

to the features in a pulse-height spectrum (PHS) of counts

versus energy. Since a radionuclide emits γ-rays at specific

energies and rates, the sequence of emitted photons can be

characterized by sets of measured energies and arrival times

at the detector: [{εm`} , {τm`}] , ` = 0, · · · , Lε(m), m =
1, · · · , Mε. The index m represents the mth γ-ray line (energy)

for a radionuclide with Mε lines and the index ` > 1 represents

the corresponding `th “downscattered” line. It is convenient

to think of each line as a separate source (` = 0). Then

the emission from a given radionuclide is represented as a

superposition of individual γ-ray sources. We will refer to

this as the monoenergetic decomposition of the EMS for the

radionuclide.

A. Event Mode Sequence

A detailed mathematical representation of the event mode

sequence in terms of its monoenergetic decomposition follows

directly from Refr. [10] where we extend the decomposition

model to include “downscattered” photons. Using this char-

acterization, we have the basic signal processing model in

terms of the processes that govern its evolution. We start

with a single γ-ray arrival which can (in our problem) be

either an absorbed photon that exchanges all of its energy

with an electron (photoelectric absorption) or a scattered

photon that exchanges part of its energy with an electron

(Compton scattering). In either case, we define ξ(n; εm`, τm`),
a component of an EMS sequence, as the nth measured photon

arrival from the mth monoenergetic source of energy (` = 0)

or the `th downscatter (` > 1) of energy εm`(n), at arrival

time, τm`(n) with associated detection rate, λm`(n). The finite

resolution of the detector introduces a random component to

the measured energy; therefore, the energy is more accurately

represented as a random variable at the nth arrival εm`(n).
The resulting representation for a single photon arrival is

ξ(n; εm`, τm`) = εm`(n)δ(t − τm`(n)). By photon arrival we

refer only to the arrival of photons that are measured by the

detector and contribute to the EMS output of the detector.

In order to define the entire emission sequence over a

specified observation time interval, [to, T ), we introduce the

set notation, τ̃m` := { τm`(1) · · · τm`(Nε(m)) } and ε̃m` :=
{ εm`(1) · · · εm`(Nε(m)) } for ; ` = 0, 1, · · · , Lε(m); m =
0, · · · , Mε with Nε(m) along with Lε(m) as the total number

of counts and downscatterers for the mth-source in the inter-

val. Therefore, ξ(n; ε̃m`, τ̃m`) results in an impulse train of

random energies from the m`th source up to the nth arrival.

The interarrival time is defined by 4τm`(n) = τm`(n) −
τm`(n − 1) for 4τm`(0) = to with the corresponding set

definition (above) of 4τ̃m`(n). Using this definition, we can

rewrite with a slight abuse of notation, the photon arrival as

ξ(n; εm`, τm`) ⇒ ξ(n; εm`,4τm`) = εm`(n)δ(t − τm`(n)),
where it is understood that τm`(n) = τm`(n− 1)+4τm`(n).
Thus, we can rewrite the EMS in terms of interarrivals just

as easily as arrivals, that is, the mth monoenergetic source

representation of a radionuclide characterized by its unique

set of energy/arrival pairs is given by

ξ(Nε(m); ε̃m`,4τ̃m`) =

Lε(m)
∑

`=0

Nε(m)
∑

n=1

εm`(n)δ(t −4τm`(n))

(1)

at detection rate λm`(n) for to known.

Following Refr. [10] this EMS model can be extended from

a single monoenergetic source representation to incorporate a

set of Mε-monoenergetic source components that compose a

complete source radionuclide (RN). such that

R(N ; ε,4τ) =

Mε
∑

m=1

ξ(n; εm`(n),4τm`(n))



=

Mε
∑

m=1

Lε(m)
∑

`=0

Nε(m)
∑

n=1

εm`(n)δ(t − τm`(n)) (2)

The “extended” monoenergetic decomposition includes both

photoelectric and downscattered photons. The emission of

photons follows a well-defined probability structure, that is,

since only one photon is emitted for each event there is a fixed

probability (absolute intensity αm`) that the photon is emitted

with energy εm` out of LεMε possibilities. The probabilities

for a given radionuclide are specified in its energy decay

diagram [2], [3]. Therefore, we model this decay structure

by incorporating an indicator function defined by [12], [13]:

Ijk(m, `) =

{

1 m = j & ` = k

0 m 6= j ⊕ ` 6= k

where Ijk(m, `) is a random variable such that Pr(Ijk(m, `) =
1|ξ(n; ε, τ)) = Pr(Ijk(m, `) = 1|Ξn) = αjk for αjk the cor-

responding absolute intensity emission/occurrence probability

of the jth-monoenergetic radionuclide component and the kth

downscatter. Using the indicator function we can write the

jkth arrival (m → j; ` → k) of the EMS as

R(N ; ε,4τ) =

Mε
∑

m=1

Lε(m)
∑

`=0

Nε(m)
∑

n=1

Ijk(m, `)εm`(n)δ(t − τm`(n)) (3)

for ε := {ε̃1`, · · · , ε̃Mε`}, the complete set of energies com-

posing R along with 4τ := {4τ̃1`, · · · , τ̃Mε`}, the corre-

sponding set of interarrival times. The arrival index N is the

least upper bound of the set Nε(m). We model the energy

variations as Gaussian, ε ∼ N (εm`, σ
2
εm`

), the interarrivals

as exponential, 4τm` ∼ E(αm`λ4τm`
4τm`(n)) [2] with the

emission/occurrence probability as αm`.

B. Compton Scattering Processing Model

In this section we briefly discuss the simple γ-ray transport

model to capture and discriminate downscattered photons.

The fundamental idea is to represent the EMS as a marked

Poisson process [7] specified by its rate parameter λ(ε) as a

function of energy. Here the objective is to relate the source

rate through the transport chain to the rate measured at the

radiation detector.

The simplified γ-ray transport model developed for the

model-based sequential processor is based on a simple one-

dimensional geometry describing the source radionuclide,

shield effects and radiation detector including its material

response function. The model incorporates the physics of pho-

toelectric absorption and Compton scattering represented by

the rate distributions. The general approach is to characterize

the transport physics that incorporates the probabilities that

the photon: (1) will escape from the material; (2) will down-

scatter to a lower energy; or (3) will be absorbed producing

a photoelectron. Here the probability is a characteristic of

both geometry and material composition. The resulting signal

processing transport (SPT) model describes a fixed, one-

dimensional geometry of the source-shield-detector transport

Fig. 2. Signal processing transport (SPT) model: (a) γ-ray (photon) transport

chain from source to shield and detector in terms of rate probabilities. (b) SPT
model fundamental transport relations.

path assuming uncorrelated photon interaction ignoring the

pair production physics prevalent at higher energy (ε >
1MeV ) [2].

The basis of this approach is the mathematical projection of

the 6-dimensional Boltzmann radiation transport equation to

a single dimensional point-to-point equivalent for a specific

geometry incorporating shielding and the detector material

response. Details of the model development can be found in

Chambers [9].

The SPT model is represented by the RN source, shield

and detector with the output rate probability distributions

defined by λSRC(ε), λESC(ε), λDET (ε), respectively. The

source photon emission rate distribution corresponds to the

distribution of photons incident (input) to either the shield

or detector, λINC (ε), depending on the transport configura-

tion. A fraction or probability of the incident photons will

be absorbed, pABS(ε) with corresponding rate distribution,

λABS(ε) given by: λABS(ε) = pABS(ε) × λINC(ε) while

the remaining photons escape or are scattered according to

(1 − pABS) × λINC (ε). Defining the escape probability as

pESC(ε) enables us to write the corresponding scattering rate

distribution as λESC (ε) (see Fig. 2).

To be more precise let pSCAT (ε; ε′) be the probability of

photons at energy ε′ downscattered to ε by a single interaction

with the material. The corresponding Compton scattered rate

distribution can be expressed as

λ
(1)
SCAT (ε) =

∫ ∞

ε

pCOMP (ε; ε′) × (1 − pABS(ε′))

×(1 − pESC(ε′)) × λINC(ε′) dε′ (4)

λ
(1)
SCAT (ε) = K(ε; ε′) ◦ λINC (ε′) =

∫

∞

ε

K(ε; ε′)λINC(ε′) dε′

(5)

for pCOMP (ε; ε′) := pSCAT (ε − ε′; ε′) and the superscript

(·) is the scattering order. This expression can be simplified

further by first defining the integral operator K(ε; ε′) such that

Eq. 4 becomes

where K(ε; ε′) := pSCAT (ε; ε′) × (1 − pABS(ε′)) × (1 −
pESC(ε′)).



The scattered photon undergoes the same physics transport

in that it can escape, be absorbed or scattered again. Therefore,

for the kth-order scattering, we can write the photon transport

relations as

λABS(k; ε) = pABS(ε) × λSCAT (k − 1; ε)

λESC(k; ε) = pESC(ε) × (1 − pABS(ε))λSCAT (k − 1; ε)

λSCAT (k; ε) = K(ε; ε′) ◦ λSCAT (k − 1; ε)

= Kk(ε; ε′) ◦ λINC(k − 1; ε) (6)

The total rate distributions of escaped and absorbed photons

are obtained by summing over all k-scattering orders. That is,

define the total scattering function as:

SSCAT (ε) = λINC(ε) +

∞
∑

k=1

λSCAT (ε; k)

=
(

∞
∑

k=0

Kk(ε, ε′)
)

◦ λINC (ε)

or since the sum is the Neumann series solution of the operator

equation, we can write

SSCAT (ε) = λINC (ε) +

∫ ∞

ε

K(ε, ε′)SSCAT (ε′) dε′ (7)

which leads to the modified transport relations (see Fig. 2b):

λABS(ε) = pABS(ε) × SSCAT (ε)

λESC(ε) = pESC(ε) × (1 − pABS(ε))SSCAT (ε)

λSCAT (ε) =

∫

∞

ε

pSCAT (ε; ε′) × (1 − pABS(ε′))

×(1 − pESC(ε′))SSCAT (ε′) dε′ (8)

Solving these equations enable us to estimate the rate distri-

butions of both absorbed and escaped photons for all orders of

scattering. The model has been developed and validated using

sophisticated Monte Carlo simulation algorithms (see [9] for

more details).

From the signal processing perspective, we know that

the sequential decision function (to follow) requires that for

each photon arrival the energy, detection rate (reciprocal

mean interarrival time) and emission/occurrence (photoelec-

tric/downscatter) probabilities must be estimated. Since both

photoelectric and downscattered arrivals can have the same

energy but can have different monoenergetic target sources,

it is the “scattering (occurrence) probability” or equivalently

the emission probability (for photoelectrons) that must be

estimated. These parameters act as inherent weighting func-

tions and therefore each arrival can be thought of as being

partitioned according to the various weights into the composite

RN decision function to make the decision.

III. RADIONUCLIDE DETECTION

The development of a radionuclide detector based on

photon-by-photon processing follows. Thus, we develop a

“sequential” technique that is aimed at processing a single

Fig. 3. Bayesian radiation detection: Acquisition, pre-processing (op-

tional), energy/rate discrimination/estimation, Compton rate discrimina-
tion/estimation, background and extraneous line rejection, decision function
estimation and RN identification.

Fig. 4. Conceptual implementation (operation) of the sequential Bayesian
radionuclide detection technique. As each individual photon is extracted, it is

discriminated, estimated, the decision function (log-likelihood) calculated and
compared to a threshold to “decide” if the targeted radionuclide is present or
not. Quantitative performance and sequential thresholds are determined from

an estimated ROC curve by selecting an operating point (detection/false alarm
probability).

photon arrival at a time rather than attempting to perform a

batch solution which is the basis of PHS analysis [2]. The

basic approach is shown in Fig. 3. After a single photon is pre-

processed by the measurement system, both energy and arrival

time are extracted and passed onto energy/rate discriminators

to determine whether or not it is a targeted photon or its

downscatter. If acceptable (target), parameter estimates are

sequentially updated and provided as input to the decision

function for detection and identification. If not acceptable, the

photon is rejected and discarded (noise or background). Con-

ceptually, we illustrate the sequential detector operation in Fig.

4 showing each photon arrival along with the corresponding

decision function and thresholds.

To formally pose the radionuclide detection problem, we

appeal to classical (sequential) detection theory [14]. We are to

test the binary hypothesis that the measured EMS has evolved

from the targeted radionuclide characterized uniquely from its

monoenergetic decomposition of Eq. 3. Therefore, we specify



the hypothesis test

H0 : ξ(n; ε,4τ) = R(n; ε,4τ ) + ν(n) [NON-TARGET]

H1 : ξ(n; ε,4τ) = R(n; εt,4τ t) + ν(n) [TARGET] (9)

where R(n; ε,4τ ) is the random composite EMS of Eq. 3

contaminated with zero-mean, Gaussian measurement (instru-

mentation) noise, ν ∼ N (0, σ2
ν) for εm` ∼ N (εm`, σ

2
εm`

) and

4τm` ∼ E(λ4τm`
4τm`(n)). Here the superscript t is used to

denote the “true” or “target” parameters.

The optimal solution to this binary decision problem is

based on applying the Neyman-Pearson theorem leading to the

likelihood given by the ratio of probabilities [14]-[16]. How-

ever, since the distributions under investigation are members

of the exponential family [12], then taking logarithms leads to

the sequential log-likelihood ratio

Λ[Ξn] = Λ[Ξn−1] + lnPr(ξ(n; ε,4τ)|Ξn−1,H1)

− ln Pr(ξ(n; ε,4τ)|Ξn−1,H0) (10)

and therefore, the Wald sequential probability-ratio test be-

comes [15], [16] (see Fig. 3)

Λ[Ξn] ≥ ln T1(n) Accept H1

lnT0(n) ≤ Λ[Ξn] ≤ ln T1(n) Continue

Λ[Ξn] ≤ ln T0(n) Accept H0

(11)

where the set of EMS measurements are ΞN :=
{ξ(0), ξ(1), · · · , ξ(N)} and the thresholds are specified in

terms of the false alarm (PFA) and miss (PM ) probabilities

as

T0(n) =
PM (n)

PFA(n)
T1(n) =

1 − PM(n)

PFA(n)

typically obtained by generating receiver operating characteris-

tic (ROC) curves and selecting an operating point (PFA,PM ).

So we see that at each photon arrival (at time n), we can

sequentially update the likelihood and thresholds to perform

the detection — “photon-by-photon.”

To implement this detection technique (see Eq. 9), we must

specify the required distributions in order to calculate the

decision function It can be shown that [11] the sequential log-

likelihood ratio detector is given by

Λ[Ξn] = Λ[Ξn−1] +

Mε
∑

m=1

Lε(m)
∑

`=0

ln Θm`(n; θ,H1) −
Mε
∑

m=1

Lε(m)
∑

`=0

ln Θm`(n; θ,H0)

(12)

where

Θm`(n; θ,Hi) :=

αm` × Pr(4τm`(n)|εm`(n), Ijk(m, `), Ξn−1,Hi) ×
Pr(εm`(n)|Ijk(m, `), Ξn−1,Hi)

and recall the emission/occurrence probability is

αm` = Pr(Ijk(m, `)|Ξn−1,Hi); i = 0, 1 (13)

giving us the general form required for our problem. Note

that this formulation provides us with a channel-by-channel

(photon-by-photon) processor, since the m`-th terms are avail-

able at the output of each channel.

It can also be shown [11] that by defining the photoelectric

(absorption) log-likelihood as Λpe

[

Ξn−1

]

and the downscatter

log-likelihood as Λds

[

Ξn−1

]

, we obtain the decomposition

leading to the algorithmic structure (see Fig. 5)

Λ
[

Ξn

]

= Λ
[

Ξn−1

]

+ Λpe

[

Ξn−1

]

+ Λds

[

Ξn−1

]

(14)

where

Λpe

[

Ξn−1

]

:=

Mε
∑

m=1

lnΘm0(n; θ,H1) − ln Θm0(n; θ,H0)

Λds

[

Ξn−1

]

:=

Mε
∑

m=1

Lε(m)
∑

`=1

lnΘm`(n; θ,H1)

− lnΘm`(n; θ,H0)

Not surprisingly, we see that this log-likelihood decompo-

sition shows that if we ignore the downscattered photons as in

Refr. [10] we cannot achieve the optimal decision because we

are not using all of the physics information available! Thus,

we expect the performance of this “extended” processor to be

superior to the photoelectric only implementation!

The sequential radiation detection processor is illustrated

in Fig. 5. As the photon arrives, its energy and interarrival

time are extracted and discriminated to select the appropriate

channel for processing. If it is a targeted photoelectron, then

it is processed precisely as discussed in Refr. [10], that is,

after discrimination the energy, interarrival (detection rate) and

emission/occurrence probability parameters are estimated, the

appropriate decision function updated and compared to the

threshold to “decide” if the targeted RN is present. On the

other hand, if the arrival is not deemed a photoelectron, then

it is discriminated to investigate the possibility of it being a

potential downscattered arrival. Here discrimination is based

on the selected energies associated with the target radionuclide

and its corresponding Compton region. That is, for example

with knowledge of the target RN Compton edge [2], a number

(Lε(m)) of downscattered energies or bins are selected and

used to specify a set of discriminants for Compton pro-

cessing. If accepted, then parameter estimation is performed

to enhance the energy which is used in the SPT model to

provide an estimate of the corresponding detection rate and

emission/occurrence probability. Thus, all of the downscatter

parameters are updated along with the corresponding “true”

decision functions. It is interesting to note that we can conceive

of the downscattered photon information being partitioned

into a set of weights (occurrence probabilities) and updating

the (partial) decision functions simultaneously as prescribed

by the optimal decision function. Once this information is

extracted and the appropriate decision functions updated, then

the threshold is tested to decide on the presence of a targeted



Fig. 5. Flow diagram of radionuclide detection processor: (a) Photoelectric
processor. (b) Downscatter processor. (c) Decision function. (d) RN Detection

RN as shown in the figure. If the photon is not photoelectric,

then it is rejected and the next arrival is processed.

Applying statistical models of our problem, that is, each

energy component is assumed independent Gaussian and the

corresponding interarrival times are exponentially distributed

[2] For our problem we can re-write Eq. 12 using the cor-

responding parameter estimates as the final sequential log-

likelihood ratio radionuclide detector. That is, we require

the set of targeted (true) parameters, [{αt}, {εt}, {4τ t}] and

estimated parameters, [{α̂}, {ε̂}, {4τ̂}]. Once acquired, the

decision function can be calculated and compared to the

thresholds which have been estimated from ROC curve op-

erating points.

Λ[Ξn] = Λ[Ξn−1] +

Mε
∑

m=1

Lε(m)
∑

`=0

ln
( (αt

m`)
2λt

4τm`√
2πσεt

m`

)

− ln
( α̂2

m`λ̂4τm`
(n|n)√

2πσ̂εm`
(n|n)

)

+
(

α̂m`λ̂4τm`
(n|n) − αt

m`λ
t
4τm`

)

ξ4τ(n)

+
1

2

(ξε(n) − ε̂m`(n|n)

σ̂εm`
(n|n)

)2

− 1

2

(ξε(n) − εt
m`(n)

σεt

m`

)2

(15)

The detailed structure of the “extended” sequential pro-

cessor is shown in Fig. 6 with parameter estimates (to

follow) in the figure replacing the parameters of Eq. 13,

that is, ε̂m`(n) → εm`(n). Here we observe the underlying

parallel/distributed structure as in Refr. [10] but for both

the photoelectric and downscattered arrivals. Following the

arguments in Refr. [10], since each individual RN is uniquely

specified (statistically) by its parameter set, {ε,4τ , α}, we

assume that α is known for each target (from Tables [3] or

from the SPT model [9]). This completes the structure of

the sequential Bayesian radiation detector, we will discuss the

actual photon-by-photon implementation of this processor in

the next section.

Fig. 6. Detailed parallel/distributed implementation MBP structure for
extended photoelectric absorption and Compton downscatter illustrating both

photoelectric and downscatter discrimination, parameter estimation (LKF and
PF) and complete decision function (log-likelihood) estimates.

IV. IMPLEMENTATION

There are three phases to the implementation: (1) discrim-

ination; (2) estimation; and (3) detection as shown in Fig. 5.

The first step is to discriminate the arrival to ascertain whether

or not it is one of the targeted RN components, that is, either

a photoelectron or a downscattered photon. Discrimination is

performed using truth data from Tables [3] and the output

of SPT model [9] for downscatter along with the resulting

parameters using calibration data to construct confidence in-

tervals for both energy and average interarrivals. It is here

that the calibrated one dimensional SPT model is applied to

obtain the targeted downscatter detection rates and occurrence

probabilities for the interval constructs. Once this step is

accomplished and the arrival is accepted, then the parameter

estimation step is performed. Here the energy, interarrival

and emission/occurrence probability are estimated using the

distribution models: energy/Gaussian (linear Kalman filter), in-

terarrival/Exponential (particle filter) and emission/occurrence

probability (sequential counter). With these parameter esti-

mates available we can then calculate the decision function

(detection) by incorporating both photoelectron and downscat-

tered arrivals. The thresholds are pre-calculated from ROC

curves and the operating point (detection and false alarm

probability) selected.

Let us track a single photon arrival through the processing

steps as our road map and illustrated in Fig. 5. The processor is

partitioned into two subprocessors: one for photoelectrons and

one for downscattered photons. Each channel is structurally

identical only the targeted parameters are different. The idea

is that for each arrival the complete log-likelihood decision

function (Λ(n)) is sequentially updated until a threshold

is exceeded declaring the presence or non-presence of the

targeted RN. When the photon arrives, it is first discriminated

to discern whether it is a targeted photoelectron, if so, it

is processed and the appropriate decision function updated.



If not, it is passed to the bank of downscattered channel

processors and discriminated as to whether it is a target

downscatter based on pre-selected acceptable rate ranges. If

so, then each downscatter channel updates its corresponding

decision function after parameter estimation. If not, the photon

is rejected.

First, we investigate the individual channel processor one

for each energy/rate composing the target radionuclide.

A. Discrimination

Based on the parallel/distributed architecture of the pro-

cessor, we first apply an energy discriminator to “decide”

which channel the photon should be processed followed by

a detection rate discriminator using the interarrival for ver-

ification. The discriminators use implied hypothesis testing

by constructing confidence intervals about the means of the

respective parameters [12].

1) Energy Discriminator: The energy discriminator per-

forms the following confidence interval test to accept or reject

the photon in the m`-th channel:

[εt
m` − κγσξ ≤ εm`(n) ≤ εt

m` + κγσξ] (16)

where εt
m` is the true (m`-th channel) energy associated with

the targeted radionuclide, κγ is the respective confidence

coefficient with associated confidence level γ and σξ is the

standard deviation associated with the precision of the mea-

surement.

2) Interarrival Discriminator: The interarrival measure-

ment is tested similarly by the following confidence interval

discriminator. For large n, the estimate of the mean interarrival

time is approximately Gaussian, 4τ̂ ∼ N (4τ t,4τ t/
√

n).

[4τ t
m` − κγ̃σ4τ ≤ 4τ̂m`(n) ≤ 4τ t

m` + κγ̃σ4τ ] (17)

where 4τ t
m` is the true (channel) interarrival time associated

with the targeted radionuclide, κγ̃ is the respective confidence

coefficient with associated confidence level γ̃ and σ4τ is

the standard deviation or the variance of the estimated mean

interarrival time, 4τ̂
m`

. Events with interarrival times that

cause the estimated mean to deviate outside the confidence

bounds are rejected.

3) Photoelectric Interarrival Discriminator: For photoelec-

tric discrimination, the mean interarrival time is not necessarily

the actual source interarrival, but may include scattered or

background photon interarrivals, we use an estimated PHS

obtained during the calibration phase to approximate the

percentage (βo) of downscattered photons to estimate 4τ t

[1],[2]. βo is based on the ratio of a fixed number of higher

energy bin counts to the target energy bin count. Because of its

Poisson nature, we average the interarrivals associated with the

m`th-bin taking its reciprocal to obtain the composite (total)

rate, λεm0
. Finally, we estimate the true detection rate as

λt
m0 = (1 − βo)λεm0

, 4τ t =
1

λt
m0

(18)

4) Downscatter Discriminator: For downscatter discrimi-

nation, the “true” or table parameters are obtained by using

the SPT model rather than Tables directly. After calibration

to scale each targeted photoelectron, the associated PHS is

generated as shown in Fig. 7. A table look-up approach is

employed in the processor by using the SPT model to generate

a matrix of parameters: [ {εt
m`}, {λt

m`}, {αt
m`} ]; ` =

1, · · · , Lε(m); m = 1, · · · , Mε; In Fig. 7a, we show the partial

table of energy for each targeted γ-ray line (m-th), while in 7b,

we observe a pictorial representation of the energy bins. In Fig.

7c, we see the output of the SPT model associating each γ-ray

line (photopeak) of the PHS with its corresponding (predicted)

downscatter spectrum. The horizontal rectangles represent the

“range” of bins selected for discrimination corresponding to

the highest probability region (HPR) of the PHS. Each line

has its own, pre-selected range. When a downscatter photon is

discriminated, the appropriate bin in selected (vertical rectan-

gle in d) and the corresponding “true” occurrence probabilities

(αm`) located in the SPT model generated table—one for each

downscatter target photon residing in the selected bin. In this

way, the SPT model is used to provide the “true” parameter

values for decision function input.

The design constraint for the downscatter range of rates is

based on the SPT model output which provides a predicted

PHS obtained during the initial calibration data. Here either

all arrivals can be processed or a constrained subset selected

from the HPR observed in the SPT model predicted PHS.

In this way, as the single downscatter photon is processed,

it follows the identical steps as the photoelectron arrivals,

but uses the SPT model to determine the corresponding

emission/occurrence probability incorporated into the decision

function.

Note that Compton-edge regions of various targeted RN

can overlap (see Fig. 7c) and therefore each must be simul-

taneously updated in its respective channels and weighted

by their corresponding emission/occurrence probabilities in

the decision function calculation. Thus, for a downscattered

arrival, we can envision it being partitioned by weight (emis-

sion/occurrence probability) updating more than one log-

likelihood decision function simultaneously.

B. Detection

Sequential radionuclide detection is implemented in a

channel-by-channel framework. For a given set of radionu-

clides, the distributions associated with each individual mo-

noenergetic component are calculated in parallel at each

channel and then combined in the detector/identifier. The

sequential radiation detector has three possible choices to

discern the incoming photon arrival: (1) a target photoelectron;

or (2) a target downscattered photon; or (3) a background/noise

photon. If it is deemed background/noise, then the photon is

rejected. However, if it is a photoelectron or downscatter, then

it is processed separately. Thus, two stages of discrimination

are required, rather than the single stage of Refr. [10]. First, the

arrival is discriminated to be a photoelectron and processed as

such, if not, it is discriminated to be a downscatter photon and



Fig. 7. Rate distribution decomposition based on SPT model: (a) Energy
decomposition: downscatter (` > 0) and photoelectric (` = 0). (b) Energy bin
composition: energy, rate and emission/occurrence probability parameters. (c)

SPT model downscatter decomposition (PHS): Selected downscatter energy
channels (horizontal rectangles (green) illustrating overlap for each (m-th)
PHS. (d) “Zoomed” energy bin illustrating decomposition and probability

contribution of each (overlapped) downscatter photon.

then processed using a model-based scheme to extract its re-

quired parameters for detection. Once extracted the appropriate

(partial) decision functions are updated accordingly. Thus, the

sequential radionuclide detector is implemented in a channel-

by-channel framework. Basically, the individual distributions

are calculated in parallel at each channel and then combined

in the detector/identifier. At each arrival after discrimination,

the accepted channel jkth photon is processed by the en-

ergy and interarrival parameter estimators (θ̂) providing the

input to the log-likelihood ratio decision function along with

the truth parameters (θt → [{εt
m`}, {4τ t

m`}, {αt
m`}]; ` =

0, · · · , Lε(m); m = 1, · · · , Mε) from the Tables [3] and SPT

model [9].

Thus, after successful discrimination the parameters are

estimated and employed to calculate the log-likelihood func-

tion. These are estimated channel-by-channel (m`-th-channel)

and the overall decision function implemented sequentially

(in arrival time). Once the parameters are estimated they are

implemented in each channel log-likelihood partial calcula-

tion (Θm`(n; θ)) and all of the partial sums are combined

along with the previous (in arrival time) log-likelihood to

sequentially update the new log-likelihood at time n. It is then

compared to the threshold to see if a detection is possible.

If not, the next photon is processed and the log-likelihood

updated to see if a decision can be made. This sequential

radionuclide process continues until there is enough data to

justify a decision.

Table I. Sequential Radiation Detection with Scattering

Discrimination

[εt
m` − κγσξ ≤ εm`(n) ≤ εt

m` + κγσξ] (energy)

[4τ t
m`−κγ̃σ4τ ≤ 4τ̂m`(n) ≤ 4τ t

m`+κγ̃σ4τ ] (interarrival)

Estimation

ε̂m`(n|n) = ε̂m`(n|n − 1) + Kεm`
im`(n) (energy)

4τ̂m`(n|n) = arg max P̂r(4τm`(n)|Ξn) (interarrival)

λ̂4τm`
(n|n) =

1

4τ̂m`(n|n)
(detection rate)

α̂m`(n) =
Nεm`

(n)

Mε(n)
(emission probability)

Λ[Ξn] = Λ[Ξn−1] + ln Θm`(n; θt) − ln Θm`(n; θ̂)(dcn)

Detection

Λ[Ξn]

H1

≥
=
≤
H0

T1

Continue

T0

(log-likelihood)

V. RESULTS

A proof-of-concept experiment was developed [10] to assess

the feasibility of the sequential Bayesian processor. Three

source radionuclides (cobalt (60Co), cesium (137Cs), barium

(133Ba)) were targeted in a laboratory environment contami-

nated with background and extraneous sources that were stored

in surrounding cabinets. The equipment used in the experiment

consisting of sources, measurement instruments including a

HPGe commercial detector. The sources were positioned such

that they were centered on a direct line with the HPGe detector

face at a distance of 100 cm for 1000 sec. Each target source

and background was individually counted with the results

combined to generate the controlled “feasibility” data set. The

primary objective was to assess the feasibility of the processor

along with ability to detect and classify targeted radionuclides.

The sequential Bayesian detector was applied to the “feasi-

bility” data set. a set of experimental composite radionuclide

EMS data consisting of three radionuclides cobalt (60Co),

cesium (137Cs), barium (133Ba) with 2, 1 and 5 energy lines

(monoenergetic sources), respectively along with background

and an extraneous potassium source. After an initial calibra-

tion phase of the algorithm which consisted of “tuning” the

Bayesian processors on simulated and controlled data, setting

initial parameters, etc., the overall results of the processing

are shown in Fig. 8. We note three columns of data, the

first column is the composite pulse-height spectrum, with

the second the composite EMS with the circles representing

the discriminator output photons. The final column is the

log-likelihood decision functions for each of the targeted

radionuclides.

As each photon is processed, the decision function is se-

quentially updated until one of the thresholds (target/nontarget)

is crossed (lighter crosses in figure) declaring a threat or

non-threat. The results of the photoelectric and downscatter

processor are shown in Fig. 8 where we observe detection

times of 6.6 secs (PE: 7.1 secs), 0.7 secs (PE: 1.0 secs), and

0.53 secs (PE: 0.85 secs) respectively for the cobalt, cesium

and barium radionuclides. This performance is expected since

the “new” downscatter photon information is incorporated into



Fig. 8. Photoelectric and downscatter Bayesian detection and identification.
(a) Pulse-height spectrum (after calibration). (b) EMS with discrimination

(circles). (c) Log-likelihood decision functions for 60Co (detection time:
4.05 sec), 137Cs (detection time: 0.678 sec) and 133Ba (detection time:
0.513 sec) radionuclide detection/identification.

each channel providing a more timely detection time than the

basic photoelectric (PE) only processor.

It should also be noted that the thresholds are determined

from a receiver operating characteristic (ROC) curve for each

radionuclide decision function. That is, we synthesize EMS

and noise sequences using a brute force approach to estimate

the ROC curves in order to calculate the required thresh-

olds. Based on the experimental SNR, the selected detection

and false-alarm probabilities were (98%, 2%) specifying the

thresholds corresponding to this ROC operating point and

calculated according to Eq. 11 for each radionuclide.

Thus, we have shown that a sequential Bayesian detection

processor can be developed to provide a feasible solution to

the radiation detection problem. This was achieved by defining

a target radionuclide(s) and its monoenergetic decomposition

including downscatter evolving from the underlying transport

physics of the photon and measurement process. The key

idea was to process the data, photon-by-photon, rejecting

any extraneous non-targeted radionuclide measurements and

processing only those that correspond to the targeted threat

radionuclide(s) while identifying downscattered photons and

extracting the underlying information for processing. The new

extended processor performed quite well.

Here we “extended” this model to incorporate downscatter

physics (Compton) and developed the corresponding Bayesian

probabilistic framework to theoretically define the problem.

A particular realization of the process was successfully de-

veloped and applied to proof-of-concept experimental data

demonstrating its overall feasibility. The key idea was to

process the data (as before [10]), photon-by-photon, rejecting

any extraneous non-targeted radionuclide measurements and

processing only those that correspond to the targeted threat

radionuclide(s) while identifying downscattered photons and

extracting the underlying information for processing. The new

extended processor performed quite well compared to the

previous “photoelectric only” design of our previous work

[10].
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